What is Embark?

Tucker

Tap to enlarge

See what’s hidden in the pages of Tucker’s DNA story. You can learn about the breeds that make Tucker who he is, his genetic family tree, and even go back in time to see where his ancestors came from.

What’s your dog’s story? Find out with Embark!

Genetic Stats

Wolfiness: 6.0 % HIGH Help
Predicted Adult Weight: 52 lbs Help
Genetic Age: 33 human years Help

Embark family

Explore other Embark dogs that have one or more breed percentages that are similar to Tucker

Breed Mix By Chromosome

Our advanced test identifies from where Tucker inherited every part of the chromosome pairs in his genome. Each chromosome section is colored to represent the breed that it comes from.

Explore more

Swipe left and right to explore more results, or choose a category below

Family tree

>
Explore an interactive family tree and get a picture of Tucker’s family.

Traits

>
Genes for coat color and type, body size and shape, and other characteristics.

Breed Families

>
Dog breeds have been created over time for work and companionship. Find out about other dog breeds related to the breeds found in Tucker.

Maternal Line

>
Through the DNA inherited from Tucker’s mother we can trace his ancestry back to where dogs and people first became friends. Find out how far Tucker’s family has traveled.

Paternal Line

>
The Y-Chromosome is only passed down from father to son. Tucker’s DNA includes a story of where his father’s ancestors came from. We’ll show you more about how we categorize his ancestors all based of the science of genetics.

Let us know and we will contact Tucker’s owner and make sure he is reunited with his family soon! Thank you for helping out our furry friends.

What’s your dog’s story?

Now that you have explored what’s behind Tucker find out what your dog’s DNA has to tell you. Embark tells you more about your dog than you ever thought possible. Are you ready? Let’s go!

 
Large screen pedigre From Embark PARENTS GRANDPARENTS GREAT GRANDPARENTS German Shepherd Dog mix Border Collie mix German Shepherd Dog Alaskan Malamute mix Border Collie Chow Chow mix German Shepherd Dog German Shepherd Dog Alaskan Malamute Mixed Border Collie Border Collie Chow Chow Mixed
Explore by tapping your dog’s parents and grand parents.

Our algorithms predict this is the most likely family tree to explain Tucker’s breed mix, but this family tree may not be the only possible one.

Explore more

Swipe left and right to explore more results, or choose a category below

Traits

>
Genes for coat color and type, body size and shape, and other characteristics.

Breed Families

>
Dog breeds have been created over time for work and companionship. Find out about other dog breeds related to the breeds found in Tucker.

Maternal Line

>
Through the DNA inherited from Tucker’s mother we can trace his ancestry back to where dogs and people first became friends. Find out how far Tucker’s family has traveled.

Paternal Line

>
The Y-Chromosome is only passed down from father to son. Tucker’s DNA includes a story of where his father’s ancestors came from. We’ll show you more about how we categorize his ancestors all based of the science of genetics.

What’s your dog’s story?

Now that you have explored what’s behind Tucker find out what your dog’s DNA has to tell you. Embark tells you more about your dog than you ever thought possible. Are you ready? Let’s go!

 

Traits report  BETA

Coat Color

A number of genetic loci are known to affect coat color in dogs, and they all interact. In some cases, other genetic effects may also influence color and pattern.

Some other Embark dogs with this Coat Color genotype:

E Locus (Mask/Grizzle/Red)
EE or Ee or ee
Chromosome 5

Controls the characteristic melanistic mask seen in the German Shepherd and Pug as well as the grizzled "widow's peak" of the Afghan and Borzoi. Melanistic mask (Em) is dominant to grizzle (Eg) which is dominant to black (E) and red (e). Dogs that are EE or Ee are able to produce normal black pigment, but its distribution will be dependent on the genotypes at the K and A Loci. Dogs that are ee will be a shade of red or cream regardless of their genotype at K and A. The shade of red, which can range from a deep copper like the Irish Setter to the near-white of some Golden Retrievers, is dependent on other genetic factors including the Intensity (I) Locus, which has yet to be genetically mapped.

Want to help us map I Locus? If you haven't already, complete your ee pup's Embark profile with a photo! Remember, a picture is worth a thousand words!

Citations: Schmutz et al 2003 , Dreger and Schmutz 2010 ,

More information: http://www.doggenetics.co.uk/masks.html

K Locus (Dominant Black)
kyky
Chromosome 16

Causes a dominant black coat. Dogs with a dominant KB allele have black coats regardless of their genotype at the A locus; the coat color of dogs homozygous for the recessive ky allele are controlled by A locus. Alleles: KB > ky

Citations: Candille et al 2007

More information: http://www.doggenetics.co.uk/black.htm

A Locus (Agouti)
awa or awat
Chromosome 24

Determines whether hair pigment is produced in a banded red and black pattern or solid black. Fawn or sable (ay) is dominant to wolf sable (aw) which is dominant to black-and-tan (at), which is in turn dominant to recessive black (a).

Citations: Berryere et al 2005 , Dreger and Schmutz 2011 ,

More information: http://www.doggenetics.co.uk/tan.html

D Locus (Dilute)
DD
Chromosome 25

Lightens a black coat to blue and a red coat to buff. A dilute phenotype requires two copies of the recessive d allele.

Citations: Drogemuller et al 2007

More information: http://www.doggenetics.co.uk/dilutes.html

B Locus (Brown/Chocolate/Liver)
Bb
Chromosome 11

Lightens a black coat to brown, chocolate or liver. The brown phenotype requires two copies of the recessive b allele. Red or cream dogs that carry two b alleles remain red or cream but have brown noses and footpads.

Citations: Schmutz et al 2002

More information: http://www.doggenetics.co.uk/liver.html

Other Coat Traits

Furnishings, shedding and curls are all genetic! And they all interact, too. In fact, the combination of these genetic loci explain the coat phenotypes of 90% of AKC registered dog breeds.

For more information on the genetics of coat types you can refer to https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897713/figure/F3/

Some other Embark dogs with this Coat Traits genotype:

Long Haircoat (FGF5)
GT
Chromosome 32

Confers a long, silky haircoat as observed in the Yorkshire Terrier and the Long Haired Whippet. The "T" allele is associated with longer hair.

Citations: Housley & Venta 2006 , Cadieu et al 2010

Shedding (MC5R)
CC
Chromosome 1

Affects shedding propensity in non-wire-haired dogs. Dogs with the ancestral C allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with one or more T allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be low shedders. Dogs with furnished/wire-haired coats tend to be low shedders regardless of their MC5R genotype.

Citations: Hayward et al 2016

Curly Coat (KRT71)
CC
Chromosome 27

Causes the curly coat characteristic of Poodles and Bichons Frises. Dogs need at least one copy of the "T" allele to have a curly coat.

Citations: Cadieu et al 2010

Other Body Features

Brachycephaly (BMP3)
CC
Chromosome 32

Affects skull size and shape. Many brachycephalic or "smushed face” breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived A allele. Mesocephalic (Staffordshire Terrier, Labrador) and dolichocephalic (Whippet, Collie) dogs have one, or more commonly two, copies of the ancestral C allele. At least five different genes affect snout length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes.

Citations: Schoenbeck et al 2012

Hind Dewclaws (LMBR1)
CC
Chromosome 16

Common in certain breeds, hind dewclaws are extra, nonfunctional digits located midway between your dog's paw and hock. Dogs with at least one copy of the T allele have about a 50% of chance of having hind dewclaws.

Citations: Park et al 2008

Body Size

Body size is a complex trait that is affected by both genetic and environmental variation. Our genetic analysis includes genes that, together, explain over 80% of the variation in dog body size. It does not account for runting or stunting; nor does it account for the interactions between various genes both known and unknown.

Some other Embark dogs with this Body Size genotype:

Body Size - IGF1
NI
Chromosome 15

The "I" allele is associated with smaller size.

Citations: Sutter et al 2007

Body Size - IGF1R
GG
Chromosome 3

The "A" allele is associated with smaller size.

Citations: Hoopes et al 2012

Body Size - STC2
TT
Chromosome 4

The "A" allele is associated with smaller size.

Citations: Rimbault et al 2013

Body Size - GHR (E195K)
GG
Chromosome 4

The "A" allele is associated with smaller size.

Citations: Rimbault et al 2013

Body Size - GHR (P177L)
CC
Chromosome 4

The "T" allele is associated with smaller size.

Citations: Rimbault et al 2013

Performance

Altitude Adaptation (EPAS1)
GG
Chromosome 10

Confers hypoxia tolerance. Dogs with at least one A allele are more tolerant of high altitude environments. This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.

Citations: Gou et al 2014

Explore more

Swipe left and right to explore more results, or choose a category below

Family tree

>
Explore an interactive family tree and get a picture of Tucker’s family.

Breed Families

>
Dog breeds have been created over time for work and companionship. Find out about other dog breeds related to the breeds found in Tucker.

Maternal Line

>
Through the DNA inherited from Tucker’s mother we can trace his ancestry back to where dogs and people first became friends. Find out how far Tucker’s family has traveled.

Paternal Line

>
The Y-Chromosome is only passed down from father to son. Tucker’s DNA includes a story of where his father’s ancestors came from. We’ll show you more about how we categorize his ancestors all based of the science of genetics.

What’s your dog’s story?

Now that you have explored what’s behind Tucker find out what your dog’s DNA has to tell you. Embark tells you more about your dog than you ever thought possible. Are you ready? Let’s go!

DNA shows us the unique path to each of today’s recognized breeds by exposing the relatedness between them.
Border Collie
4 related breeds
Border Collie
Border Collies are highly energetic and work oriented herding dogs, whose stamina is matched by their intelligence and alertness. If you want the smartest dog out there, then you have come to the right place!
Related Breeds
Bearded Collie
Cousin breed
Collie
Cousin breed
Australian Shepherd
Cousin breed
Shetland Sheepdog
Cousin breed
Alaskan Malamute
4 related breeds
Alaskan Malamute
The Alaskan Malamute features a powerful, sturdy body built for stamina and strength. It reigns as one of the oldest dog breeds whose original looks have not been significantly altered. This intelligent canine needs a job and consistent leadership to avoid becoming bored or challenging to handle.
Related Breeds
Siberian Husky
Sibling breed
Greenland Dog
Cousin breed
Chinook
Cousin breed
Carolina Dog
Cousin breed
Chow Chow
3 related breeds
Chow Chow
This distinctive-looking dog breed has a proud, independent spirit that some describe as catlike. He can be aloof — if you’re looking for a cuddle buddy, this probably isn’t the best breed for you — and downright suspicious of strangers. But for the right person, he’s a fiercely loyal companion.
Related Breeds
Shiba Inu
Cousin breed
Chinese Shar-Pei
Cousin breed
Akita
Cousin breed

Some images and text courtesy of the AKC, used with permission.

Explore more

Swipe left and right to explore more results, or choose a category below

Family tree

>
Explore an interactive family tree and get a picture of Tucker’s family.

Traits

>
Genes for coat color and type, body size and shape, and other characteristics.

Maternal Line

>
Through the DNA inherited from Tucker’s mother we can trace his ancestry back to where dogs and people first became friends. Find out how far Tucker’s family has traveled.

Paternal Line

>
The Y-Chromosome is only passed down from father to son. Tucker’s DNA includes a story of where his father’s ancestors came from. We’ll show you more about how we categorize his ancestors all based of the science of genetics.

What’s your dog’s story?

Now that you have explored what’s behind Tucker find out what your dog’s DNA has to tell you. Embark tells you more about your dog than you ever thought possible. Are you ready? Let’s go!

Through Tucker’s mitochondrial DNA we can trace his mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

Haplogroup

A1d

Haplotype

A91/11/378

A1d

Tucker’s Haplogroup

This female lineage can be traced back about 15,000 years to some of the original Central Asian wolves that were domesticated into modern dogs. The early females that represent this lineage were likely taken into Eurasia, where they spread rapidly. As a result, many modern breed and village dogs from the Americas, Africa, through Asia and down into Oceania belong to this group! This widespread lineage is not limited to a select few breeds, but the majority of Rottweilers, Afghan Hounds and Wirehaired Pointing Griffons belong to it. It is also the most common female lineage among Papillons, Samoyeds and Jack Russell Terriers. Considering its occurrence in breeds as diverse as Afghan Hounds and Samoyeds, some of this is likely ancient variation. But because of its presence in many modern European breeds, much of its diversity likely can be attributed to much more recent breeding.

A91/11/378

Tucker’s Haplotype

Part of the large A1d haplogroup, this common haplotype occurs in village dogs all over the world. Among the 29 breeds that we have detected it in to date, the most frequent breeds we see expressing it are Afghan Hounds, Greater Swiss Mountain Dogs, and Borzois.

Some other Embark dogs with this haplotype:

The vast majority of Rottweilers have the A1d haplogroup.

Explore more

Swipe left and right to explore more results, or choose a category below

Family tree

>
Explore an interactive family tree and get a picture of Tucker’s family.

Traits

>
Genes for coat color and type, body size and shape, and other characteristics.

Breed Families

>
Dog breeds have been created over time for work and companionship. Find out about other dog breeds related to the breeds found in Tucker.

Paternal Line

>
The Y-Chromosome is only passed down from father to son. Tucker’s DNA includes a story of where his father’s ancestors came from. We’ll show you more about how we categorize his ancestors all based of the science of genetics.

What’s your dog’s story?

Now that you have explored what’s behind Tucker find out what your dog’s DNA has to tell you. Embark tells you more about your dog than you ever thought possible. Are you ready? Let’s go!

Through Tucker’s Y-chromosome we can trace his father’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

Haplogroup

A1

Haplotype

Ha.1

A1

Tucker’s Haplogroup

A1 is the male lineage in several breeds that aren't very closely related to each other. Gordon Setters, Newfoundlands, and Miniature Schnauzers all had male founders from this paternal line, and now many males in those breeds carry their Y chromosome. Each of these breeds started in the past 200-300 years, and their founders must have included dogs that trace back to the same male ancestors deeper in dog evolutionary time, stretching all the way back to when dogs were first domesticated in Central Asia about 15,000 years ago. Unlike many Y chromosome (male) lineages found in European and recent American breeds, only one village dog (in Alaska) carries an A1 Y chromosome, indicating that the breeds from this lineage probably didn't travel around the world with European colonization as much as some other breeds.

Ha.1

Tucker’s Haplotype

The lone member of the A1 haplogroup, this haplotype occurs in Newfoundlands, Miniature Schnauzers, Gordon Setters, and village dogs in Alaska.

Some other Embark dogs with this haplotype:

The Newfoundland is from the A1 paternal line.

Explore more

Swipe left and right to explore more results, or choose a category below

Family tree

>
Explore an interactive family tree and get a picture of Tucker’s family.

Traits

>
Genes for coat color and type, body size and shape, and other characteristics.

Breed Families

>
Dog breeds have been created over time for work and companionship. Find out about other dog breeds related to the breeds found in Tucker.

Maternal Line

>
Through the DNA inherited from Tucker’s mother we can trace his ancestry back to where dogs and people first became friends. Find out how far Tucker’s family has traveled.

What’s your dog’s story?

Now that you have explored what’s behind Tucker find out what your dog’s DNA has to tell you. Embark tells you more about your dog than you ever thought possible. Are you ready? Let’s go!