Embark Veterinary Veterinary Practice

Swab code: belle100100_swab Swab activated on 8/1/2022 Results completed on 8/1/2022 Report accessed on 8/1/2022 Ordered by Lorenz Connelly

vetsupport@embarkvet.com 1-855-203-8271

Patient Information

Belle

0 yrs 3 mths - F

Genetic Age: 7 human years Predicted Adult Weight: 16 lbs

Client Information

Marlowe Mann

contact@example.com 555-555-4222

Breed Information

48.3% Poodle (Small) 16.3% Chihuahua 15.0% Bichon Frise

11.5% Cocker Spaniel

8.9% Pekingese

1 Increased Risk Result

Von Willebrand Disease Type I, Type I vWD

Page 2

219 Clear Results

Belle is not at increased risk for 219 of the genetic health variants that Embark tests.

Page 5

Glossary

Page 21

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

vetsupport@embarkvet.com 1-855-203-8271

1 Increased Risk Result

Von Willebrand Disease Type I, Type I vWD

How to interpret this result

Belle has two copies of this variant in the VWF gene and is considered at risk for developing von Willebrand Disease Type I, Type I vWD. vWD is the most common hereditary bleeding disorder in both dogs and humans and is caused by reduced or non-functional von Willebrand Factor. Type I is associated with a low plasma vWF concentration, which occurs in Doberman Pinschers, Pembroke Welsh Corgis, Poodles, Bernese Mountain Dogs, and other breeds.

You can learn more about penetrance, clinical signs, diagnostics, and care below or email vetsupport@embarkvet.com should you desire to speak with a genetic counselor.

What is Von Willebrand Disease Type I, Type I vWD?

Canine platelets participate in several events related to primary and secondary hemostasis. Primary hemostasis is a process characterized by platelet aggregation via platelet binding to fibrinogen, leading to platelet plug formation, while secondary hemostasis involves the cleavage of fibrinogen to insoluble fibrin via thrombin generated by the proteolytic coagulation system.

von Willebrand Factor (vWF), a blood protein that functions to stabilize Factor VIII in the blood and aide the adhesion of platelets to the subendothelium, is produced by endothelial cells and megakaryocytes (Factor VIII is produced by hepatocytes). Variably sized vWF multimers circulate in plasma. The largest multimers of the protein are the most hemostatically active and are primarily stored within Weibel-Palade bodies within vascular endothelial cells. vWF is also stored in the alpha granules in platelets. However, dogs have a very small percentage of vWF in platelets compared to cats or humans.

Variant Info

VWF

Recessive inheritance 2 copies of the variant

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

vetsupport@embarkvet.com 1-855-203-8271

von Willebrand Disease (vWD), is the most common hereditary bleeding disorder in both dogs and humans and is caused by reduced or non-functional von Willebrand Factor. Type I is associated with a low plasma vWF concentration and a full array of vWF multimers and typically mild to moderate bleeding. It occurs in Doberman Pinschers, Pembroke Welsh Corgis, Poodles, Bernese Mountain Dogs, and other breeds. While this variant is causative for vWD Type I in many breeds, there are likely other unknown causative, possibly breed-specific, variants.

Age of Onset of Clinical Signs or Symptoms

vWD is typically diagnosed in puppies or young adults when they are spayed or neutered and have a problem with clotting. However, it can be diagnosed at any age.

Clinical Signs

Primary hemostatic disorders impact the skin or mucous membranes and may be noted by an owner or veterinarian as ecchymoses (bruising), epistaxis (nose bleeds), excessive bleeding at tail docking or ear cropping, gingival bleeding (particularly during permanent tooth eruption), frank red blood in vomit, the stool, or urine, or melena (black digested blood in the stool). Note that petechial hemorrhages are rarely seen in vWD and if observed in a predisposed dog breed, a differential diagnosis of thrombocytopenia should precede vWD.

Penetrance and Additional Impact on Phenotype

Although carriers of the variant are not expected to have a high rate of clinical signs and do not bleed excessively following trauma or surgery, bleeding may occur if a heterozygous animal co-inherits another hemostatic disorder. There has been discussion that this variant may have an autosomal incomplete dominant mode of inheritance (MOI) in some breeds or breed populations. This is possibly due to the fact that dogs with one copy of the variant have reduced (when compared to normal) vWF:Aq levels, although clinical bleeding without a compounding cause is extremely rare. Additionally, the methodology for measuring vWF is evolving and may not be standardized, and sampling nuances (prior to the discovery of the causative variant) could have suggested a MOI other than recessive. If there are any concerns, a vWF:Ag test should be performed on heterozygotes as well.

Follow-up Diagnostics to Consider

A measure of vWF:Ag is the definitive test for diagnosing vWD. Typically, vWF:Ag activity ≤ 49% is consistent with a diagnosis of vWD, with <35% being at risk of hemorrhage. Carriers of vWD have reduced levels of vWF:Ag (<70%) compared to normal dogs (≥70% activity). Contact your reference laboratory to discuss sample submission and results interpretation.

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

vetsupport@embarkvet.com 1-855-203-8271

Plasma vWF levels fluctuate daily in normal, healthy dogs, and may be exaggerated during pregnancy or heat in bitches and in any dog with a systemic illness.

Buccal mucosal bleeding times (BMBTs) should be prolonged, whereas results of coagulation screening tests such as prothrombin time (PT) and activated partial thromboplastin time (APTT) and platelet count are normal.

Treatment and Management Options

- With proper care, affected dogs can have a normal lifespan.
- Veterinarians performing surgery on known affected dogs should have ready access to blood products banked for transfusions.
- Drugs known to interfere with normal platelet function should be avoided in animals with vWD.
- Desmopressin acetate (DDAVP), which stimulates the release of vWF from stores, increases vWF:Aq values, and decreases the BMBT for up to 4 hours. (Be aware, not all dogs with Type I vWD will respond to the drug.)

References

Brooks MB, Erb HN, Foureman PA, Ray K. von Willebrand disease phenotype and von Willebrand factor marker genotype in Doberman Pinschers. Am J Vet Res. 2001;62(3):364-369. doi:10.2460/ajvr.2001.62.364"

Cornell University College of Veterinary Medicine EClinPath (n.d.), von Willebrand disease, Retrieved October 18, 2021 from https://eclinpath.com/hemostasis/disorders/von-willebrands-disease."

Crespi JA, Barrientos LS, Giovambattista G. von Willebrand disease type 1 in Doberman Pinscher dogs: genotyping and prevalence of the mutation in the Buenos Aires region, Argentina. J Vet Diagn Invest. 2018;30(2):310-314. doi:10.1177/1040638717750429"

Boudreaux MK. Inherited platelet disorders. J Vet Emerg Crit Care (San Antonio). 2012;22(1):30-41. doi:10.1111/j.1476-4431.2011.00702.x"

Cortese L, Christopherson PW, Pelagalli A. Platelet Function and Therapeutic Applications in Dogs: Current Status and Future Prospects. Animals (Basel). 2020;10(2):201. Published 2020 Jan 25. doi:10.3390/ani10020201"

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

vetsupport@embarkvet.com 1-855-203-8271

All Conditions Tested

To view COI and traits information, log into your account.

Auditory (2)

	Gene	Copies	Results	
Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS	МҮО7А	0	Clear	
Early Onset Adult Deafness, EOAD - Rhodesian Ridgeback Variant	EPS8L2 Deletion Exon 12	0	Clear	

Cardiac (4)

Dilated Cardiomyopathy	Gene	Copies	Results
Dilated Cardiomyopathy, DCM1 - Doberman Pinscher Variant 1	PDK4	0	Clear
Dilated Cardiomyopathy, DCM2 - Doberman Pinscher Variant 2	TTN	0	Clear
Other	Gene	Copies	Results
Other Cardiomyopathy and Juvenile Mortality - Belgian Shepherd Variant	Gene YARS2	Copies 0	Results Clear

Endocrine (3)

Hypothyroidism	Gene	Copies	Results
Congenital Dyshormonogenic Hypothyroidism with Goiter - Shih Tzu Variant	SLC5A5	0	Clear
Congenital Hypothyroidism - Rat, Toy Fox, and Hairless Terrier Variant	TPO Exon 3	0	Clear
Congenital Hypothyroidism - Tenterfield Terrier Variant	TPO Exon 9	0	Clear

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

vetsupport@embarkvet.com 1-855-203-8271

Gastrointestinal (4)

Gastroenteropathy	Gene	Copies	Results
✓ Lundehund Syndrome	LEPREL1	0	Clear
Malabsorptive Disorder	Gene	Copies	Results
Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption - Beagle Variant	CUBN Exon 8	0	Clear
Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption - Border Collie Variant	CUBN Exon 53	0	Clear
Inherited Selected Cobalamin Malabsorption with Proteinuria - Komondor Variant	CUBN	0	Clear

Hematologic (32)

Coagulopathy	Gene	Copies	Results
Bernard-Soulier Syndrome, BSS - Cocker Spaniel Variant	GP9	0	Clear
Congenital Macrothrombocytopenia - Cairn and Norfolk Terrier Variant	TUBB1 Exon 1	0	Clear
Factor IX Deficiency, Hemophilia B - Rhodesian Ridgeback Variant	F9 Exon 7	0	Clear
Factor IX Deficiency, Hemophilia B - Terrier Variant	F9 Exon 7	0	Clear
Factor VII Deficiency	F7 Exon 5	0	Clear
Factor VIII Deficiency, Hemophilia A - Boxer Variant	F8 Exon 10	0	Clear
Factor VIII Deficiency, Hemophilia A - German Shepherd Variant 1	F8 Exon 11	0	Clear
Factor VIII Deficiency, Hemophilia A - German Shepherd Variant 2	F8 Exon 1	0	Clear
Glanzmann's Thrombasthenia Type I - Great Pyrenees Variant	ITGA2B Exon 13	0	Clear
Glanzmann's Thrombasthenia Type I - Otterhound Variant	ITGA2B Exon 12	0	Clear

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

		Gene	Copies	Results
Ø	May-Hegglin Anomaly - Pug Variant	МҮН9	0	Clear
⊘	P2Y12 Receptor Platelet Disorder - Greater Swiss Mountain Dog Variant	P2Y12	0	Clear
	Platelet Factor X Receptor Deficiency, Scott Syndrome - German Shepherd Dog Varian	t TMEM16F	0	Clear
⊘	Prekallikrein Deficiency - Shih Tzu Variant	KLKB1 Exon 8	0	Clear
	Thrombopathia - American Eskimo Dog Variant	RASGRP1 Exon 5	0	Clear
	Thrombopathia - Basset Hound Variant	RASGRP1 Exon 5	0	Clear
	Thrombopathia - Landseer Variant	RASGRP1 Exon 8	0	Clear
A	Von Willebrand Disease Type I, Type I vWD	VWF	2	At risk
	Von Willebrand Disease Type II, Type II vWD - Pointer Variant	VWF	0	Clear
	Von Willebrand Disease Type III, Type III vWD - Shetland Sheepdog Variant	VWF Exon 7	0	Clear
Ø	Von Willebrand Disease Type III, Type III vWD - Terrier Variant	VWF Exon 4	0	Clear
ed Blo	ood Cell Abnormality	Gene	Copies	Results
Ø	Canine Elliptocytosis - Labrador Retriever Variant	SPTB Exon 30	0	Clear
⊘	Methemoglobinemia - Pomeranian Variant	CYB5R3	0	Clear
②	Pyruvate Kinase Deficiency - Basenji Variant	PKLR Exon 5	0	Clear
Ø	Pyruvate Kinase Deficiency - Beagle Variant	PKLR Exon 7	0	Clear
Ø	Pyruvate Kinase Deficiency - Labrador Retriever Variant	PKLR Exon 7	0	Clear
	Pyruvate Kinase Deficiency - Pug Variant	PKLR Exon 7	0	Clear
	Pyruvate Kinase Deficiency - Terrier Variant	PKLR Exon 10	0	Clear

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

vetsupport@embarkvet.com 1-855-203-8271

White Blood Cell Abnormality	Gene	Copies	Results
Canine Leukocyte Adhesion Deficiency Type I, CLAD I - Setter Variant	ITGB2 Exon 3	0	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III - German Shepherd Variant	FERMT3	0	Clear
✓ Trapped Neutrophil Syndrome, TNS	VPS13B Exon 19	0	Clear
Other	Gene	Copies	Results
Ligneous Membranitis, LM - Scottish Terrier Variant	PLG	0	Clear

Immunologic (6)

	Gene	Copies	Results
Complement 3 Deficiency, C3 Deficiency - Brittany Variant	C3	0	Clear
Severe Combined Immunodeficiency, SCID - Terrier Variant	PRKDC	0	Clear
Severe Combined Immunodeficiency, SCID - Wetterhoun Variant	RAG1	0	Clear
Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever	МТВР	0	Clear
X-linked Severe Combined Immunodeficiency, X-SCID - Basset Hound Variant	IL2RG Exon 1	0	Clear
X-linked Severe Combined Immunodeficiency, X-SCID - Corgi Variant	IL2RG	0	Clear

Integument (18)

Collagen Abnormality	Gene	Copies	Results
Opystrophic Epidermolysis Bullosa - Central Asian Shepherd Dog Variant	COL7A1	0	Clear
Oystrophic Epidermolysis Bullosa - Golden Retriever Variant	COL7A1 Exon 68	0	Clear

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

		Gene	Copies	Results
	Ehlers Danlos - Doberman Pinscher Variant	ADAMTS2	0	Clear
⊘	Musladin-Lueke Syndrome, MLS - Beagle Variant	ADAMTSL2 Exon 7	0	Clear
Kerati	n Abnormality	Gene	Copies	Results
	Congenital Keratoconjunctivitis Sicca and Ichthyosiform Dermatosis, Dry Eye Curly C Syndrome, CKCSID - Cavalier King Charles Spaniel Variant	oat FAM83H	0	Clear
⊘	Focal Non-Epidermolytic Palmoplantar Keratoderma, Pachyonychia Congenita - Dogue de Bordeaux Variant	KRT16 Exon 6	0	Clear
	Hereditary Footpad Hyperkeratosis - Rottweiler Variant	DSG1	0	Clear
	Hereditary Footpad Hyperkeratosis - Terrier and Kromfohrlander Variant	FAM83G	0	Clear
	Hereditary Nasal Parakeratosis, HNPK - Labrador Retriever Variant	SUV39H2	0	Clear
	Ichthyosis, Epidermolytic Hyperkeratosis - Terrier Variant	KRT10 Intron 5	0	Clear
②	Ichthyosis, ICH1 - Golden Retriever Variant	PNPLA1 Exon 8	0	Clear
②	Ichthyosis - American Bulldog Variant	NIPAL4 Exon 6	0	Clear
	Ichthyosis - Great Dane Variant	SLC27A4	0	Clear
Other		Gene	Copies	Results
	Bald Thigh Syndrome - Greyhound Variant	IGFBP5	0	Clear
	Ectodermal Dysplasia, Skin Fragility Syndrome - Chesapeake Bay Retriever Variant	PKP1 Intron 1	0	Clear
	Lethal Acrodermatitis, LAD - Bull Terrier Variant	MKLN1	0	Clear

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

vetsupport@embarkvet.com 1-855-203-8271

	Gene	Copies	Results
Oculocutaneous Albinism, OCA - Small Breed Variant	SLC45A2	0	Clear
X-linked Ectodermal Dysplasia, Anhidrotic Ectodermal Dysplasia, XHED - German Shep Variant	herd Dog EDA	0	Clear
Metabolic (33)			
Enzyme Deficiency	Gene	Copies	Results
Hypocatalasia, Acatalasemia - Beagle Variant	CAT	0	Clear
L-2-Hydroxyglutaricaciduria, L2HGA - Staffordshire Bull Terrier Variant	L2HGDH	0	Clear
Pyruvate Dehydrogenase Deficiency - Spaniel Variant	PDP1	0	Clear
Storage Disease	Gene	Copies	Results
Canine Fucosidosis - English Springer Spaniel Variant	FUCA1	0	Clear
GM1 Gangliosidosis - Alaskan Husky Variant	GLB1 Exon 15	0	Clear
GM1 Gangliosidosis - Portuguese Water Dog Variant	GLB1 Exon 2	0	Clear
GM1 Gangliosidosis - Shiba Inu Variant	GLB1 Exon 15	0	Clear
GM2 Gangliosidosis - Japanese Chin Variant	HEXA	0	Clear
GM2 Gangliosidosis - Poodle Variant	HEXB Exon 3	0	Clear
Globoid Cell Leukodystrophy, Krabbe Disease - Terrier Variant	GALC Exon 5	0	Clear
Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA - Maltese Variant	G6PC	0	Clear
Glycogen Storage Disease Type II, Pompe's Disease, GSD II - Finnish and Swedish Lapphund, Lapponian Herder Variant	GAA Exon 15	0	Clear

Clear

✓ Glycogen Storage Disease Type IIIA, GSD IIIA - Curly Coated Retriever Variant

0

AGL GDE

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

	Gene	Copies	Results
Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency - Wachtelhund Variant	PFKM Exon 8	0	Clear
Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency - Whippet and English Springer Spaniel Variant	PFKM Exon 21	0	Clear
✓ Lagotto Storage Disease	ATG4D Exon 10	0	Clear
Late-Onset Neuronal Ceroid Lipofuscinosis, NCL12 - Australian Cattle Dog Variant	ATP13A2	0	Clear
Mucopolysaccharidosis IIIB, Sanfilippo Syndrome Type B, MPS IIIB - Schipperke Variant	NAGLU	0	Clear
Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA - Dachshund Va	ariant SGSH	0	Clear
Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA - New Zealand Huntaway Variant	SGSH	0	Clear
Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII - German Shepherd Variant	GUSB	0	Clear
Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII - Terrier Brasileiro Variant	GUSB	0	Clear
Neuronal Ceroid Lipofuscinosis 1, NCL1 - Dachshund Variant	PPT1 Exon 8	0	Clear
Neuronal Ceroid Lipofuscinosis 10, NCL10 - American Bulldog Variant	CTSD Exon 5	0	Clear
Neuronal Ceroid Lipofuscinosis 2, NCL2 - Dachshund Variant	TPP1 Exon 4	0	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL5 - Border Collie and Australian Cattle Dog Variant	CLN5 Exon 4	0	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL5 - Golden Retriever Variant	CLN5 Exon 4	0	Clear
Neuronal Ceroid Lipofuscinosis 6, NCL6 - Australian Shepherd Variant	CLN6 Exon 7	0	Clear
Neuronal Ceroid Lipofuscinosis 7, NCL7 - Chihuahua and Chinese Crested Variant	MFSD8	0	Clear

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

	Gene	Copies	Results
Neuronal Ceroid Lipofuscinosis 8, NCL8 - Australian Shepherd and German Shorthaire Pointer Variant	ed CLN8	0	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL8 - English Setter Variant	CLN8 Exon 2	0	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL8 - Saluki Variant	CLN8	0	Clear
Neuronal Ceroid Lipofuscinosis, Cerebellar Ataxia, NCL4A - American Staffordshire Terrier Variant	ARSG Exon 2	0	Clear
Muscular (13)			
Movement Disorder	Gene	Copies	Results
Myotonia Congenita - Australian Cattle Dog Variant	CLCN1 Exon 23	0	Clear
Myotonia Congenita - Miniature Schnauzer Variant	CLCN1 Exon 7	0	Clear
Muscular Dystrophy	Gene	Copies	Results
Muscular Dystrophy Limb Girdle Muscular Dystrophy - Boston Terrier Variant	Gene SGCD	Copies 0	Results Clear
		-	
Limb Girdle Muscular Dystrophy - Boston Terrier Variant	SGCD	0	Clear
 ✓ Limb Girdle Muscular Dystrophy - Boston Terrier Variant ✓ Muscular Dystrophy - Cavalier King Charles Spaniel Variant 1 	SGCD	0	Clear Clear
 ✓ Limb Girdle Muscular Dystrophy - Boston Terrier Variant ✓ Muscular Dystrophy - Cavalier King Charles Spaniel Variant 1 ✓ Muscular Dystrophy - Golden Retriever Variant 	SGCD DMD DMD	0 0	Clear Clear Clear
 Limb Girdle Muscular Dystrophy - Boston Terrier Variant Muscular Dystrophy - Cavalier King Charles Spaniel Variant 1 Muscular Dystrophy - Golden Retriever Variant Ullrich-like Congenital Muscular Dystrophy - Labrador Retriever Variant 1 	SGCD DMD DMD COL6A3 Exon 10	0 0 0	Clear Clear Clear
 Limb Girdle Muscular Dystrophy - Boston Terrier Variant Muscular Dystrophy - Cavalier King Charles Spaniel Variant 1 Muscular Dystrophy - Golden Retriever Variant Ullrich-like Congenital Muscular Dystrophy - Labrador Retriever Variant 1 Myopathy 	SGCD DMD DMD COL6A3 Exon 10 Gene	0 0 0 0 Copies	Clear Clear Clear Clear Results

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

vetsupport@embarkvet.com 1-855-203-8271

		Gene	Copies	Results
	Inherited Myopathy of Great Danes	BIN1	0	Clear
Ø	Myotubular Myopathy 1, X-linked Myotubular Myopathy, XL-MTM - Labrador Retriever Variant	MTM1 Exon 7	0	Clear
	Nemaline Myopathy - American Bulldog Variant	NEB	0	Clear
Other		Gene	Copies	Results
Ø	Myostatin Deficiency, Bully Whippet Syndrome	MSTN	0	Clear

Neurologic (32)

Brain or Seizure Disorder	Gene	Copies	Results
Alaskan Husky Encephalopathy, Subacute Necrotizing Encephalomyelopathy	SLC19A3 Exon 2	0	Clear
Alexander Disease - Labrador Retriever Variant	GFAP Exon 4	0	Clear
Benign Familial Juvenile Epilepsy, Remitting Focal Epilepsy - Lagotto Romagnolo Variant	LGI2 Exon 8	0	Clear
Cerebellar Abiotrophy, Neonatal Cerebellar Cortical Degeneration, NCCD - Beagle Varia	ant SPTBN2	0	Clear
Cerebellar Hypoplasia - Eurasier Variant	VLDLR	0	Clear
Hereditary Ataxia, Cerebellar Degeneration - Old English Sheepdog and Gordon Setter Variant	RAB24 Exon 1	0	Clear
Neonatal Encephalopathy with Seizures, NEWS - Poodle Variant	ATF2	0	Clear
Progressive Early-Onset Cerebellar Ataxia - Finnish Hound Variant	SEL1L	0	Clear
Spinocerebellar Ataxia with Myokymia and/or Seizures - Terrier Variant 2	KCNJ10	0	Clear
Spinocerebellar Ataxia, Late-Onset Ataxia, LoSCA - Terrier Variant 1	CAPN1	0	Clear

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

		Gene	Copies	Results
⊘	Spongy Degeneration with Cerebellar Ataxia 1, SDCA1, SeSAME/EAST Syndrome - Shepherd Variant 1	KCNJ10	0	Clear
⊘	Spongy Degeneration with Cerebellar Ataxia 2, SDCA2 - Shepherd Variant 2	ATP1B2	0	Clear
Movem	nent Disorder	Gene	Copies	Results
⊘	Degenerative Myelopathy, DM	SOD1A	0	Clear
Ø	Hypomyelination and Tremors - Weimaraner Variant	FNIP2	0	Clear
⊘	Juvenile Myoclonic Epilepsy - Rhodesian Ridgeback Variant	DIRAS1	0	Clear
⊘	Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD - Chinese Crested Variant	SERAC1	0	Clear
⊘	Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD - Kerry Blue Terrier Variant	SERAC1	0	Clear
⊘	Shaking Puppy Syndrome, X-linked Generalized Tremor Syndrome - English Springer Spaniel Variant	PLP1	0	Clear
larcol	epsy	Gene	Copies	Results
⊘	Narcolepsy - Dachshund Variant	HCRTR2	0	Clear
	Narcolepsy - Doberman Pinscher Variant	HCRTR2	0	Clear
Ø	Narcolepsy - Labrador Retriever Variant	HCRTR2	0	Clear
Neuro	degenerative Disorder	Gene	Copies	Results
Ø	Fetal-Onset Neonatal Neuroaxonal Dystrophy - Giant Schnauzer Variant	MFN2	0	Clear
Ø	Neuroaxonal Dystrophy, NAD - Rottweiler Variant	VPS11	0	Clear
Ø	Neuroaxonal Dystrophy, NAD - Spanish Water Dog Variant	TECPR2	0	Clear

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

vetsupport@embarkvet.com 1-855-203-8271

Neuropathy	Gene	Copies	Results
✓ Alaskan Malamute Polyneuropathy, AMPN ND ND ND ND ND ND ND ND ND	DRG1	0	Clear
Demyelinating Polyneuropathy - Miniature Schnauzer Variant SBF2/MTR	≀M13	0	Clear
Juvenile Laryngeal Paralysis and Polyneuropathy, Polyneuropathy with Ocular Abnormalities and Neuronal Vacuolation, POANV - Rottweiler Variant	ЭАР1	0	Clear
✓ Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 1, LPN1 ARHGEF10 Exc	on 17	0	Clear
Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 2, LPN2	GJA9	0	Clear
Laryngeal Paralysis - Miniature Bull Terrier Variant RAPG	€F6	0	Clear
Sensory Neuropathy G	Gene	Copies	Results
Hereditary Sensory Autonomic Neuropathy, Acral Mutilation Syndrome, AMS - Spaniel and GDNF Pointer Variant	F-AS	0	Clear
Sensory Neuropathy - Border Collie Variant FAM1	134B	0	Clear

Neuromuscular (7)

Junctionopathy	Gene	Copies	Results
Congenital Myasthenic Syndrome, CMS - Golden Retriever Variant	COLQ Exon 13	0	Clear
Congenital Myasthenic Syndrome, CMS - Heideterrier Variant	CHRNE	0	Clear
Congenital Myasthenic Syndrome, CMS - Jack Russell Terrier Variant	CHRNE Exon 7	0	Clear
Congenital Myasthenic Syndrome, CMS - Labrador Retriever Variant	COLQ Exon 14	0	Clear
Congenital Myasthenic Syndrome, CMS - Old Danish Pointing Dog Variant	CHAT Exon 6	0	Clear

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

Movement Disorder	Gene	Copies	Results
Episodic Falling Syndrome - Cavalier King Charles Spaniel Variant	CAN Exons 1-4	0	Clear
Paroxysmal Dyskinesia, PxD - Soft Coated Wheaten Terrier Variant	PIGN	0	Clear
Ophthalmologic (31)			
Glaucoma	Gene	Copies	Results
Goniodysgenesis and Glaucoma, Pectinate Ligament Dysplasia, PLD - Border Collie Variar	nt OLFML3	0	Clear
Primary Open Angle Glaucoma and Primary Lens Luxation - Chinese Shar-Pei Variant	ADAMTS17	0	Clear
Primary Open Angle Glaucoma - Basset Fauve de Bretagne Variant	ADAMTS17	0	Clear
Primary Open Angle Glaucoma - Beagle Variant	ADAMTS10	0	Clear
Primary Open Angle Glaucoma - Norwegian Elkhound Variant	ADAMTS10	0	Clear
Iris or Lens	Gene	Copies	Results
Hereditary Cataracts, Early-Onset Cataracts, Juvenile Cataracts - Australian Shepherd Var	iant HSF4	0	Clear
Primary Lens Luxation	ADAMTS17	0	Clear
Retinopathy	Gene	Copies	Results
Achromatopsia - German Shepherd Variant	CNGA3 Exon 7	0	Clear
Achromatopsia - Labrador Retriever Variant	CNGA3 Exon 7	0	Clear
Autosomal Dominant Progressive Retinal Atrophy - English Mastiff and Bullmastiff Variant	RHO Exon 1	0	Clear
✓ Canine Multifocal Retinopathy, cmr1 BEST1.	VMD2 Exon 2	0	Clear

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

	Gene	Copies	Results
Canine Multifocal Retinopathy, cmr2 - Coton de Tulear Variant	BEST1/VMD2 Exon 5	0	Clear
 Canine Multifocal Retinopathy, cmr3 - Finnish and Swedish Lapphund, Lapponian Herder Variant 	BEST1/VMD2 Exon 10	0	Clear
Collie Eye Anomaly, Choroidal Hypoplasia, CEA	NHEJ1 Intron 4	0	Clear
Congenital Stationary Night Blindness - Beagle Variant	LRIT3	0	Clear
Congenital Stationary Night Blindness - Briard Variant	RPE65	0	Clear
Oay Blindness, Cone Degeneration, Achromatopsia - Alaskan Malamute Variant	CNGB3 Deletion	0	Clear
Day Blindness, Cone Degeneration, Achromatopsia - German Shorthaired Pointe Variant	r CNGB3 Exon 6	0	Clear
Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1	SLC4A3 Exon 16	0	Clear
Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2	TTC8 Exon 8	0	Clear
Macular Corneal Dystrophy, MCD - Labrador Retriever Variant	CHST6	0	Clear
Progressive Retinal Atrophy, CNGA - Shetland Sheepdog Variant	CNGA1 Exon 9	0	Clear
Progressive Retinal Atrophy, Cone-Rod Dystrophy 1, crd1 - American Staffordshir Variant	re Terrier PDE6B	0	Clear
Progressive Retinal Atrophy, Cone-Rod Dystrophy 4, crd4/cord1	RPGRIP1 Exon 2	0	Clear
Progressive Retinal Atrophy, PRA1 - Papillon Variant	CNGB1	0	Clear
Progressive Retinal Atrophy, PRA3 - Tibetan Spaniel and Terrier Variant	FAM161A	0	Clear
Progressive Retinal Atrophy, Progressive Rod-Cone Degeneration, prod	PRCD Exon 1	0	Clear
Progressive Retinal Atrophy, Rod-Cone Dysplasia 1, rcd1 - Irish Setter Variant	PDE6B Exon 21	0	Clear
Progressive Retinal Atrophy, Rod-Cone Dysplasia 3, rcd3 - Corgi Variant	PDE6A	0	Clear

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

vetsupport@embarkvet.com 1-855-203-8271

	Gene	Copies	Results
Progressive Retinal Atrophy - Basenji Variant	SAG	0	Clear
X-Linked Progressive Retinal Atrophy 1, XL-PRA1 - Samoyed and Husky Variant	RPGR Exon 15	0	Clear
Oral Cavity (4)			
Developmental Disorder	Gene	Copies	Results
Cleft Lip and/or Cleft Palate - Nova Scotia Duck Tolling Retriever Variant	ADAMTS20	0	Clear
Tooth Structure Defect	Gene	Copies	Results
 Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia - Italian Greyhound Variant 	ENAM	0	Clear
Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia - Parson Rus Terrier Variant	ssell ENAM	0	Clear
Raine Syndrome, Canine Dental Hypomineralization Syndrome - Border Collie Variant	FAM20C	0	Clear
Personalized Medicine (3)	Gene	Copies	Results
Alanine Aminotransferase Activity	GPT	0	Clear
MDR1 Drug Sensitivity	ABCB1	0	Clear
Malignant Hyperthermia	RYR1	0	Clear
Pulmonary (4)			
	Gene	Copies	Results

Clear

Neonatal Interstitial Lung Disease - Airedale Terrier Variant

0

LAMP3

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

vetsupport@embarkvet.com 1-855-203-8271

 ✓ Primary Ciliary Dyskinesia, PCD - Alaskan Malamute Variant ✓ Primary Ciliary Dyskinesia, PCD - Old English Sheepdog Variant ✓ Recurrent Inflammatory Pulmonary Disease, RIPD - Rough Collie Variant 		Gene	Copies	Results
	mary Ciliary Dyskinesia, PCD - Alaskan Malamute Variant	NME5	0	Clear
Recurrent Inflammatory Pulmonary Disease, RIPD - Rough Collie Variant AKNA 0	mary Ciliary Dyskinesia, PCD - Old English Sheepdog Variant	CCDC39	0	Clear
	current Inflammatory Pulmonary Disease, RIPD - Rough Collie Variant	AKNA	0	Clear

Skeletal (10)

Chondrodystrophy	Gene	Copies	Results
Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD - Retrogene	FGF4 - chr12	0	Clear
Chondrodystrophy - Norwegian Elkhound and Karelian Bear Dog Variant	ITGA10	0	Clear
Oculoskeletal Dysplasia 2, Dwarfism-Retinal Dysplasia 2, drd2, OSD2 - Samoyed Variant	COL9A2 5' UTR	0	Clear
Osteochondrodysplasia, Skeletal Dwarfism - Miniature Poodle Variant	SLC13A1	0	Clear
Skeletal Dysplasia 2, SD2 - Labrador Retriever Variant	COL11A2	0	Clear
Decreased Bone Strength	Gene	Copies	Results
Decreased Bone Strength Hereditary Vitamin D-Resistant Rickets - Pomeranian Variant	Gene VDR Exon 4	Copies 0	Results Clear
		·	
Hereditary Vitamin D-Resistant Rickets - Pomeranian Variant	VDR Exon 4	0	Clear
 Hereditary Vitamin D-Resistant Rickets - Pomeranian Variant Osteogenesis Imperfecta, Brittle Bone Disease - Beagle Variant 	VDR Exon 4 COL1A2	0	Clear
 Hereditary Vitamin D-Resistant Rickets - Pomeranian Variant Osteogenesis Imperfecta, Brittle Bone Disease - Beagle Variant Osteogenesis Imperfecta, Brittle Bone Disease - Dachshund Variant 	VDR Exon 4 COL1A2 SERPINH1 Exon 5	0 0	Clear Clear Clear

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

vetsupport@embarkvet.com 1-855-203-8271

Urogenital (14)

Nephro	ppathy	Gene	Copies	Results
	Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN - Cocker Spaniel Variant	COL4A4 Exon 3	0	Clear
⊘	Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN - English Springer Spaniel Variant	COL4A4 Exon 30	0	Clear
	Fanconi Syndrome - Basenji Variant	FAN1	0	Clear
	Polycystic Kidney Disease, PKD - Bull Terrier Variant	PKD1 Exon 29	0	Clear
Ø	Protein Losing Nephropathy, PLN - Soft Coated Wheaten and Airedale Terrier Variant	NPHS1	0	Clear
⊘	X-Linked Hereditary Nephropathy, XLHN - Samoyed Variant 2	COL4A5 Exon 35	0	Clear
Urolith	iasis	Gene	Copies	Results
	2,8-Dihydroxyadenine Urolithiasis, 2,8-DHA Urolithiasis - American Indian Dog Variant	APRT Exon 3	0	Clear
	Cystinuria Type I-A - Newfoundland Variant	SLC3A1 Exon 2	0	Clear
Ø	Cystinuria Type II-A - Australian Cattle Dog Variant	SLC3A1 Exon 6	0	Clear
	Cystinuria Type II-B - Miniature Pinscher Variant	SLC7A9 Exon 9	0	Clear
Ø	Hyperuricosuria and Hyperuricemia or Urolithiasis, HUU	SLC2A9 Exon 5	0	Clear
	Primary Hyperoxaluria - Coton de Tulear Variant	AGXT Exon 2	0	Clear
Other		Gene	Copies	Results
	Persistent Mullerian Duct Syndrome, PMDS - Miniature and Standard Schnauzer Varia	nt AMHR2	0	Clear
Ø	Renal Cystadenocarcinoma and Nodular Dermatofibrosis, RCND - German Shepherd D Variant	og FLCN	0	Clear

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9%

Pekingese

Results completed on: 8/1/2022

vetsupport@embarkvet.com 1-855-203-8271

Glossary

Key Terms

Increased Risk Result

The dog is at risk for showing clinical signs (phenotype) of a given condition. For recessive conditions, this means a dog has inherited two copies of an associated variant. For dominant, codominant, and additive conditions, this means a dog has inherited at least one copy of the variant. X-linked conditions will vary based on sex of the dog.

A dog's breed(s) and genetic background are also considered in this assessment. Genetic testing is an assessment of risk and not a clinical diagnosis, and not all dogs in this category will develop clinical signs.

Notable Result

A result may be notable for several reasons. The variant may not induce a disease state but rather inform patient care (this may include the tests listed under Personalized Medicine). The dog may have only one copy of a variant with a recessive mode of inheritance (meaning the dog is a carrier and is not expected to show the phenotype associated with the variant). The impact of the variant may also be influenced by a dog's breed(s). Based on the available research within the breed or related breeds, you will see more specific text within the results.

Clear Result

A dog with two healthy copies of a gene sequence is not at risk for developing the associated disease due to that variant. Many diseases can manifest as a result of other unknown genetic variants and/or environmental factors.

Variant

An alteration in the DNA with the potential to cause a change in phenotype (i.e. disease). A report may state that the dog has zero, one, or two copies of the variant for which we test. The term "variant" may be used interchangeably with "mutation."

Genotype

The genetic code related to the variant being present or absent in the dog's DNA.

The physical impact or appearance directed by the genotype. The phenotype is often described as an expression of the genotype.

Complex Phenotype

The condition, appearance, or other physical expression of the genotype controlled by both genetic and environmental factors.

Penetrance

Proportion of dogs with a particular genotype that expresses the associated phenotype. There are two types of penetrance.

- 1. Incomplete penetrance means that not all dogs with the genotype will develop the clinical signs of the phenotype.
- 2. Complete penetrance means that all dogs with the genotype will develop the clinical signs of the phenotype.

Carrier

This term has traditionally been used to describe a dog that has one copy of the variant but is not expected to show the phenotype associated with the variant (this is applicable to variants with a recessive mode of inheritance (MOI) as described below). If used in a breeding pair, a carrier may pass the variant to its litter.

At-risk

This indicates that the dog may manifest the disease and generally is used when a dog has two copies of the variant (but this depends on the MOI).

Embark uses the term "at-risk" and not "affected" because genetic testing is an assessment of risk and not a clinical diagnosis.

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9%

Results completed on: 8/1/2022

vetsupport@embarkvet.com 1-855-203-8271

Linkage Disequilibrium Test

When a causal variant cannot be identified or when the variant is incompatible with the genotyping platform constraints, allelic association or linkage disequilibrium (LD) tests can be utilized. This is typically done to assist dog breeders in selectively breeding out a deleterious condition. LD tests are based on a statistical association between two loci that are physically very close in the DNA. The coupling of the chosen proxy marker to the causal variant is known mathematically for the most relevant populations.

LD-based tests have a slightly increased incidence of false positives and false negatives, which are test-specific and known. Embark offers limited numbers of these tests. Embark continuously works to refine LD-based tests by assaying the direct variant in a subset of dogs using alternative methods. These inputs help to refine the tests over time.

Provisional Result

Embark combines random sampling and sequencing with the use of blinded controls to confirm that each test is performing to standard at >99% genotyping accuracy and reproducibility. Our standard health tests have been validated using known heterozygous and homozygous samples to ensure design accuracy and use multiple probes per condition to ensure reproducibility. Provisional tests are for rare disorders for which DNA samples from carrier and/or at-risk individuals are not available for calculating test reliability, or for structural variants where more testing is needed to ensure the same level of accuracy.

If you have access to DNA from carrier or at-risk individuals and are interested in helping us validate a test, please contact us at vetsupport@embarkvet.com

Modes of Inheritance

Recessive

A dog is thought to need two copies of a variant to be considered at-risk for the clinical disease or to have the visible phenotype for traits. This may apply to autosomal or X-linked variants, however. Read below for additional details regarding X-linked variants.

Dominant

A dog is thought to need only one copy of the variant to be considered at-risk for the clinical disease or to have the visible phenotype for traits.

Codominant/Additive

In general, these terms are used to describe variants in which dogs with one copy of the variant have a different phenotype compared to dogs with zero or two copies of the variant (although there is a slight difference between the two terms).

X-linked

The variant resides on the X chromosome, and male dogs need just one copy of the variant to be considered at-risk. For recessively inherited X-linked conditions, female dogs typically require two copies of the variant to be considered at-risk. Female dogs who have one copy of a recessively inherited X-linked variant are often referred to as carriers, but they can exhibit signs of disease that range from clinically asymptomatic to fully affected. This is due to a normal phenomenon known as X-chromosome inactivation, where one X chromosome is silenced in each cell.

Weight

The Embark DNA test provides a genetic size based not just on breed ancestry but on over a dozen genes known to influence a dog's weight, as well as sex and breed-specific modifiers.

Our algorithm explains over 85% of the variance in healthy adult weight. However, due to a few as-yet-undiscovered genes and genetic interactions that affect size, this algorithm sometimes under or over-predicts weight.

48.3% Poodle (Small), 16.3% Chihuahua, 15.0% Bichon Frise, 11.5% Cocker Spaniel, 8.9% Pekingese

Results completed on: 8/1/2022

vetsupport@embarkvet.com 1-855-203-8271

Genetic Age

Dogs age at very different rates due to a number of genetic and environmental factors. Embark's genetic age calculates how old a dog would be if he or she were aging at an average human rate (using humans in the USA as the baseline). This measure is more personalized than "one dog year = seven human years".

View the patient's profile see the personalized genetic age table for this dog.

We start by asking the dog's approximate calendar age. We then calculate genetic age by factoring a dog's breed composition along with information from genes that affect size, sex, and the dog's inbreeding coefficient (COI).

Impact of Breed

When determining whether or not a variant is expected to have a clinical impact for a breed, we have taken into account research either published, internal, or otherwise presented by a subject matter authority as our primary criteria. So, while a dog may have the variant associated with a disease (one or two copies for dominant variants and two copies for autosomal recessive variants), he or she may not be known to be at significant clinical risk from that variant.

Based on the available research within the breed or highly related breeds, you may see text similar to the following options:

- 1. This genetic variant is not likely to significantly increase the risk that this dog will develop the clinical disease.
- 2. This genetic variant is associated with an increased risk that this dog will develop the clinical disease.
- 3. We do not know whether this variant increases the risk that this dog will develop the clinical disease.

Embark is continuing to explore the relationship of genotype to phenotype, and risk assessment may be updated as more data is reviewed. You can contact vetsupport@embarkvet.com or call 1-855-203-8271 to report any clinical diagnoses.